68 THE VIDEOGRAPHIC METHOD

WELBERRY, T. R. (1986). J. Appl. Cryst. 19, 382-389.

WELBERRY, T. R. & GALBRAITH, R. (1973). J. Appl. Cryst. 6,
87-96.

WELBERRY, T. R. & RAYyMOND, D. G. (1980). J. Appl. Cryst. 13,

Acta Cryst. (1993). Ad49, 68-79

244-251.
WOLFF, P. M. DE (1974). Acta Cryst. A30, 777-785.
WooLFsoN, M. M. (1970). X-ray Crystallography. Cambridge
Univ. Press.

The Local Domain Configuration in Partially Ordered AuCu,

By S. H. RaAuman

Institut fur Mineralogie, Universitdt Hannover, Welfengarten 1, 3000 Hannover, Germany

(Received 28 November 1991; accepted 27 May 1992)

Abstract

If the videographic simulation method is applied, the
real structure configuration of the domains formed
in a partially ordered AuCu; crystal is established.
Each domain is formed by four ordered AuCu,
blocks. The blocks are interconnected crosswise by
two different domain boundaries, namely the pre-
ferred antiphase domain boundary and the new
domain interface structure (I cells of the composition
Au,Cuq). Six symmetry-related domains exist with
the above-mentioned domain structure. An AuCu,
crystal that shows the characteristic two- and four-
fold splitting of the superlattice reflexions in its
diffraction pattern (of partial order) contains at least
two such domain configurations at 90° relative to each
other. A two- and three-dimensional simulation using
different combination probabilities and structure
variants allows a quantitative description of the real
configuration of the AuCuj structure at different tem-
peratures to be made.

1. Introduction

Many X-ray investigations have been made to study
the order/disorder transitions of binary alloys. These
include the interpretation of the diffuse scattering
from disordered crystals. For this purpose, simple
cubic AB and AB; structures (intermetallic phases)
were used. A classic example is the copper-gold alloy
AuCu;. This compound exhibits, compared to other
intermetallic compounds e.g. B-CuZn, a relatively
low critical temperature (7,=663 K) and a large
difference in scattering powers (fa,=2.8 f-,). The
above-mentioned properties make AuCu; an interest-
ing phase for many investigations in the field of short-
and long-range-order phenomena (Sykes & Jones,
1936, Jones & Sykes, 1938; Cowley, 1950; Chapman,
1956; Wilson, 1962; Guinier, 1963; Warren, 1968).
AuCu, exhibits a simple cubic ordered structure at
room temperature (a=3.72 A, see Fig. 1a). With
increasing temperature the Au atoms can exchange
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their sites with the Cu atoms (Fig. 1). The intensities
of the Bragg reflexions with mixed indices (superlat-
tice reflexions) decrease with increasing temperature.
At the critical temperature, long-range order vanishes
(§=0) and the intensities of the superlattice
reflexions (1,44, 1110, Isgo €tc.) are almost zero. Above
T., only short-range-order phenomena are present
(Edmunds, Hinde & Lipson, 1947; Wilson, 1947;
Cowley, 1950; Edmunds & Hinde, 1952; Chapman,
1956).

Around the positions of the superlattice reflexions
a diffuse background with a characteristic distribution
(shape) is present (Fig. 2c) (Wilson, 1947; Cowley,
1950).

An AuCu; crystal cooled from about 873 K to a
temperature below T, (about 373 K) gives rise to a
fine structure of the superlattice reflexions (of partial
order) as schematically shown in Fig. 2(b) (Raether,
1952; Yamaguchi, Watanabe & Ogawa, 1961; Sinclair
& Thomas, 1975). Inspection of the a*b* plane
reveals that superlattice reflexions with h and k mixed

Fig. 1. (a) AuCu; structure variants. () Antiphase domain bound-
ary of the favoured type. (¢), (d) Antiphase domain boundary
of nonfavoured types.
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are split into doublets and those with h and k both
odd are split into quartets (Fig. 2b).

The observed fine structure around the superlattice
reflexion positions has been interpreted by Wilson
(1943, 1947), Edmunds et al. (1947), Raether (1952)
and Cowley (1965) as being caused by the existence
of antiphase domains. Wilson (1947) calculated the
intensity profile of the superlattice reflexions for
different antiphase domain boundary types (Figs. 1b,
¢,d). From the comparison between diffraction
experiments and calculated profiles, he favours an
antiphase domain model in which the Au atoms are
not in direct contact (Fig. 1b). This result agrees with
Cowley’s (1950) measurement of the short-range-
order parameter a,;, =0.009, which indicates a
preference of Au-Au for [211] sites (24 equivalent
directions) in the model of Wilson (1947).

Based on the above-mentioned results, Taylor,
Hinde & Lipson (1951) produced masks for optical
transforms with different antiphase configurations
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Fig. 2. (a) Schematic diffraction pattern of fully ordered AuCu,.
(b) Partial order. (¢) Short-range order T>T..

(Figs. 1b, ¢, d). They also found that the Au atoms
should not be in direct contact at the domain bound-
aries. An agreement between the observed fine struc-
ture of the superlattice reflexions and the optical
transforms, especially around 110, is not achieved.

TEM investigations at various temperatures indi-
cate the existence of antiphase domains (Fisher &
Marcinkowski, 1961; Yamaguchi et al, 1961; Hash-
imoto & Ogawa, 1970; Cowley, 1965; Zhu & Cowley,
1982). With increasing temperature (below T.), a
decrease of the domain size is observed. The antiphase
domains are distributed in a disordered matrix.
Samples quenched from a temperature above T, to
a temperature below T, also contain small domains
(of about 15 A) in a disordered matrix (Sinclair &
Thomas, 1975).

To obtain general information about the real struc-
ture configuration of AuCu;, computer simulations
using the Monte Carlo method were undertaken by
Gehlen & Cohen (1965) and Schwartz & Cohen
(1965). Such simulations are based on an iterative
method that is controlled by a comparison between
calculated and observed short-range-order param-
eters. The authors concluded from the simulations
for a temperature above T, that small domains still
exist that are embedded in a disordered matrix. Below
T. they found relatively large antiphase domains.
Monte Carlo simulations based on particle interac-
tions were also calculated by Golosov & Dudka
(1973), Polgreen (1985), Gompper & Kroll (1988)
and Zhu & Zabel (1990).

The Monte Carlo simulations mentioned above use
the measured short-range-order parameters in a direct
or indirect manner as input data for the calculations.
Experimental errors are necessarily included in the
calculations. This is particularly the case for the short-
range-order parameters of the nearest and next-
nearest neighbours (e.g. a,,, a,00), as pointed out
by Hayakawa, Bardhan & Cohen (1975). Moreover,
it must be taken into account that the short-range-
order parameters (a;,,; Cowley, 1950) represent the
values of a correlation or a Patterson function that
probably leads to several solutions in the simulations.

A theoretical formulation for the calculation of the
diffuse scattering intensities resulting from a disor-
dered binary alloy has been derived by Hashimoto
(1974, 1981, 1983). The theory also takes into account
the contributions of domains distributed in a disor-
dered matrix to the diffuse intensities. Hashimoto
concluded that the fine structure around the superlat-
tice reflexions in an AuCu; crystal is caused by a
particular distribution of ordered microdomains in a
disordered matrix. However, a real structure model
for the domain configuration or distribution for a
partially ordered AuCu, crystal is still lacking.

In the present investigation a systematic video-
graphic simulation procedure (Rahman, 1991, 1993a)
was undertaken to evaluate the real domain structure
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uniform distribution. A more realistic model with a
representative number of domains with a specific
distribution can be simulated using the four structure
variants shown in Fig. 6(b).

The simulated ‘real-structure’ image S(L, M, N)
resulting from a three-dimensional distribution using
combination probabilities W, of different structure
variants or configurations can be expressed as
(Rahman, 1993a)

L M N
S(L, Ms N) = Z Z Z ‘len(-llmn), (1)
(I=1) (m=1) (n=1)

where I, m, n are integers; ¢i,.,(Ji..) 1s the structure
variant of type J,,,,, at an Imn site; J,,,, is the random
variable for an Imn position.

Different distributions of ¢(x, y, z) can be obtained
by varying the values of the horizontal and vertical
combination probabilities "W and °W, (tabulated
values for a certain distribution). In contrast to other
simulation procedures reviewed by Welberry (1985),
as well as atoms and structure variants (configur-
ation), domains with different scatterers or clusters
can be distributed within a disordered matrix (Rah-
man, 1993a).

Every structure variant (Fig. 6b) represents a quar-
ter of the AuCus; unit cell as shown in Fig. 6(a). The
edge length of the four variants is equal to a/2 or to
the unit length of the short-range-order vector r,,,.
All possible or permitted horizontal and vertical com-
binations between the structure variants are given in
Figs. 6(¢) and (d). The corresponding combination
probabilities (Rahman, 1991, 1993a) of the four struc-
ture variants for the horizontal ("Wj,-) and vertical
(*W,;) directions are given in Table 1.

For the videographic simulation, the following
restrictions (selection rules) are proposed (Fig. 6):
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Fig. 6. (a) Ordered AuCu;. (b) Structure variants for the video-
graphic simulation. (¢) Preferred and nonpreferred antiphase
domain boundaries along the horizontal direction. (d) Preferred
and nonpreferred antiphase domain boundaries along the ver-
tical direction.
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Table 1. Scheme for horizontal (h) and vertical (v)
combination probabilities

Vertical combinations
NP2 3 4

Horizontal combinations
FAYERR! 2 3 4

10 "w,twtwy, L0 "W, "W, W,
2 ':WZI " WZ] 24 2 vrwz1 0 LWZ% uWZd
3 WJI WJ.Z 0 W34 3 ¢ W]l ¢ WJZ 0 ° WJA
4 hwdl hwdz W4) 0 4 "‘w'“ UWAZ qu} 0

Table 2. Combination probabilities for the videographic
simulation of Fig. 7 (W, =70, W, =29, W,=1%)

Horizontal combinations Vertical combinations

A1 2 3 a4 A1 2 3 4
10w owow 10w, w,ow
2 W, 0 W, W, 2 W, 0 W, W,
I w,oW, 0 W, 3IW,oWw, 0w,
4w, W, w, 0 4 0w, W, W, 0

(1) Direct Au-Au contact is forbidden (diagonal
elements are set to zero).

(2) There is a preference for the formation of anti-
phase domain boundaries of the favoured type as
shown in Fig. 1(b).

The above-mentioned selection rules can be
expressed in terms of the combination probabilities
as:

("W, "Wy, W, P

=("Wps, "Wy, "Wy, "W) = W,
("W, "Was, "Wy, "W,

=("Wy,, "Was, Wiy, "Wy ) = W,,
("W, "Wy, TWL, L "W,

=("Wy,, "Wy, "Wy, "W5) = W,

with
W, + W+ W, = 100%.

W, is the probability of forming ordered AuCu,
regions. In the case that W, and W; are equal to zero,
then a fully ordered AuCu, is obtained (Fig. 6a). W,
is the probability of forming the preferred antiphase
domain boundary (Figs. 6¢, d). W5 is the probability
of forming the nonpreferred antiphase domain bound-
ary (Figs. 6 and 1). Taking the above-mentioned rules
into consideration, Table 1 can be simplified as
shown in Table 2.

A two-dimensional videographic simulation with
W, =70%, W,=29% and W;=1% is shown in Fig.
7 together with the corresponding Fourier transfor-
mation (FT). The intensity distribution of the FT is
similar to the intensity distribution measured by
Cowley (1950) for an AuCu, crystal heated to 678 K
[Figs. 2(¢) and 17(g)].
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By varying the values of W, and W; (Table 5), six
three-dimensional simulations were undertaken with
a crystal volume of 128 x 128 x 32 cells.

The simulations show that the structure contains
small ‘ordered’ regions (of approximately 7.4 A)
forming a preferred antiphase boundary or the
new boundary in an irregular manner. The domains
are surrounded by a disordered matrix. The Fourier
transforms of the six simulations are represented in
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Fig. 15. (a) Eight structure variants for the three-dimensional

simulation (SRO). (b) Preferred horizontal combination for z=0
1

and z=3. (c¢) Preferred vertical combination for z=0 and z=%A
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Fig. 16. Three-dimensional representation of two of the new
domain configurations of Fig. 9 (only the Au atoms are
drawn).

Table 4. Combination probabilities for the three-
dimensional simulation

W, probability of forming an ordered AuCu; region.
W, probability of forming an ordered AuCu, region, a preferred
antiphase domain boundary or the new domain boundary.
W, probability of forming a preferred antiphase boundary and the
new boundary.

W, probability of forming a nonpreferred antiphase boundary
(Figs. 15¢, d).

W, probability of forming an ordered AuCu, region in the z

direction.
a direction
J\i 1 2 3 4 5 6 7 8
1 0 w, W 0 0 W, 0 0
2 w, 0 0 W, W, 0 0 0
3 W, 0 0 W, 0 0 0 w,
4 0 w, W, 0 0 0 W, 0
5 0 w, 0 0 0 W, W, 0
6 W, 0 0 0 W, 0 0 W,
7 0 0 0 W, W, 0 0 W,
8 0 0 A 0 0 W, W, 0
b direction
J\i 1 2 3 4 5 6 7 8
1 0 W, W, 0 0 W, 0 0
2 W, 0 0 w, w, 0 0 0
3 w, 0 0 W, 0 0 0 W,
4 0 W, W 0 0 0 W, 0
5 0 W, 0 0 0 W, W, 0
6 W, 0 0 0 W, 0 0 w,
7 0 0 0 w, W, 0 0 W,
8 0 0 w, 0 0 W, W, 0
¢ direction
J\i 1 2 3 4 5 6 7 8
1 0 W, W, 0 0 w, LA 0
2 w, 0 0 W, W, 0 0 W,
3 w, 0 0 W, W 0 0 w,
4 0 W, W, 0 0 W, W, 0
S 0 LA W 0 0 LA W, 0
6 W, 0 0 W, W, 0 0 W,
7 W 0 0 W, W, 0 0 w,
8 0 W W, 0 0 w, w, 0

Table 5. Values (%) of the combination probabilities
for the three-dimensional simulations

Image W, W, LA W, W,
a 64 98 3s 1 97
b 64 98 35 1 96
¢ 55 98 44 1 97
d 50 98 49 1 97
e 45 98 54 1 97
/ 35 98 64 1 97

Fig. 17 (see also Table S). In terms of the distribution
and shape of the diffuse regions, these results are in
close agreement with the experimental results of
Cowley (1950) at 678 K (Fig. 17g). This implies that
the values of the probabilities in Table 5 were chosen
correctly.

To compare the evaluated short-range-order
parameters from the three-dimensional simulations
with the experimental results, «,,, values taken
from several authors were used. These are listed in
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connected crosswise by two structurally different
boundary types (Fig. 9, domain a). One of the bound-
aries is an antiphase domain boundary of the pre-
ferred type (Fig. 2b) and the other can be described
as an interface with body-centred Au,Cu, cells (Fig.
16). At the centre of the blocks, a small disordered
region is formed (Fig. 9). Four large symmetry-related
domains (fourfold axes) exist, of which at least two
(Fig. 9, domains a and b) must be present to obtain
the characteristic fine structure. The doublet and
quartet splitting of the superlattice reflexions is due
to the existence of two large domains [Figs. 10(c)
and 11(c)] with ordered domain boundaries at 90°
relative to each other. The assumption that the fine
structure of the superlattice reflexion (doublet and
quartet splitting) is caused by a particular distribution
(correlation) of microdomains (with the same struc-
ture) in a disordered matrix cannot be confirmed.

With increasing temperature (T, < T < T,) the size
of the domains decreases and their boundaries
become irregular. The domains are comprised of two
or three blocks of different dimensions (Fig. 13).

At a temperature just above T, there is no evidence
that the block configuration is still present. However,
‘ordered’ regions embedded in a disordered matrix
exist. The dimension of such small more or less
ordered regions ranges between approximately one
and four unit cells and seems to obey a particular
size-distribution function (Rahman 1992, 1993b).
This assumption arises from the gradual variation of
the intensity distribution around the superlattice
reflexion positions as illustrated by the intensity con-
tour map of the diffuse scattering in the work of
Cowley (1950).

The videographic method can be applied to similar
problems involving other intermetallic phases (e.g.
AuCu, CuPd, CuPt, B-CuZn, Au;Cu, MoNi, etc.) to
evaluate their real structure configuration.
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